2. Let A and B be two 2×2 matrices. Consider the statements

(i)
$$AB = O \Rightarrow A = O \text{ or } B = O$$

(ii)
$$AB = I_2 \Rightarrow A = B^{-1}$$

(iii)
$$(A + B)^2 = A^2 + 2AB + B^2$$

Then

- a. (i) and (ii) are false, (iii) is true
- b. (ii) and (iii) are false, (i) is true
- c. (i) is false, (ii) and (iii) are true
- d. (i) and (iii) are false, (ii) is true

Solution -

d. (i) is false.

If
$$A = \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, then $AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = O$

- (ii) is true as the product AB is an identity matrix, if and only if B is inverse of the matrix A.
 - (iii) is false since matrix multiplication in not commutative.